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Thermal convection in a vertical circular cylinder 
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A theoretical investigation is made of the onset of buoyancy-driven convection in a 
circular cylinder. Amplitude equations are derived for the weakly nonlinear evolution 
of critical disturbances at moderate values of the radius-to-height ratio. It is shown 
that the initial form of the convective motion a t  Rayleigh numbers slightly above 
critical is not axisymmetric. Particular attention is paid to the neighbourhoods of 
points where two disturbances are simultaneously critical according to  linear theory ; 
the nonlinear evolution in such neighbourhoods is studied in detail. 

1. Introduction 
We study the onset of buoyancy-driven convection in a layer of Boussinesq fluid 

having the shape of a cylinder of uniform circular cross-section, with its axis in the 
vertical direction and with flat top and bottom. The parameter describing the geo- 
metry of the layer is the ratio of cylinder radius to cylinder height, henceforth called 
the aspect ratio and denoted by a. The layer is heated from below, and the other 
principal parameter is the Rayleigh number R. 

Our main purpose is to investigate how the weakly nonlinear interactions that 
generate convection are modified as the aspect ratio changes. In  this paper we focus 
attention on moderate aspect ratios, in the approximate interval 0.6 < a < 2.0; 
different effects come into play at both very small and very large aspect ratios, and 
will be studied separately elsewhere. We take full account in our analysis of non- 
axisymmetric modes of convection, rather than concentrating on the axisymmetric 
mode as previous workers, such as Liang, Vidal & Acrivos (1969) and Charlson & 
Sani (1975), have tended to do. Our principal results are that, in the range of aspect 
ratios under consideration, the convective motion appearing at Rayleigh numbers 
just above critical is not axisymmetric; when a < 1.0 approximately the convection 
has unit azimuthal wavenumber, while when 1-0 < a c 2-0 there is a tendency for 
two modes to occur simultaneously, either independently or as a mixed-mode com- 
bination. 

At first sight it might appear that this result is inconsistent with experimental 
observations (see e.g. the review by Koschmieder 1974), which generally allude to the 
appearance of circular rings, that is, axisymmetric solutions. However, most of the 
experimental results are for cylinders of very large aspect ratio, outside the range 
considered in this paper. On the other hand, Mitchell & Quinn (1965) saw non- 
axisymmetric modes in a cylinder of aspect ratio near one, which is consistent with 
our findings. It is also noteworthy that calculations by Charlson & Sani (1975) have 
shown that under certain circumstances an axisymmetric solution becomes unstable 
to a non-axisymmetric disturbance in a container of moderate aspect ratio. 
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The governing equations and boundary conditions are set out in $2. In order to 
reduce drastically the level of algebraic and computational complexity we apply 
artificial sidewall boundary conditions that permit the linear stability problem to be 
solved by separation of variables. Although these boundary conditions are unphysical, 
it seems nevertheless likely that the qualitative conclusions will remain valid for 
other, more realistic boundary conditions. 

In f 3 the critical Rayleigh number is determined as a function of the aspect ratio, 
and also of the mode of instability. We find that, as the aspect ratio increases, the 
azimuthal wavenumber of the critical mode changes from 1 to 2 to 0 to 3 in the range 
0 c a c 2-0. This ordering is similar to that found by Charlson & Sani (1971) for the 
Bknard problem with different boundary conditions, and by Rosenblat, Davis & 
Homsy (1982) for the analogous Marangoni problem. 

The nonlinear evolution problem is tackled by a method, outlined in f 4, in which 
field quantities are expanded in series of eigenfunctions of the linear stability problem. 
This approach was developed by Eckhaus (19659, and the criterion for truncation of 
the series used here follows a proposal by Rosenblat (1  979). 

Application of this method leads eventually to a nonlinear evolution equation of 
Landau type when a single mode is critical, and to a pair of coupled Landau equations 
at points where two modes are simultaneously critical. The nature and stability of 
the solutions to such equations are examined in f f  5 and 6 respectively. A brief dis- 
cussion of the results is presented in f 7. 

2. Formulation 
We consider a Boussinesq fluid with constant viscosity and thermal diffusivity, 

and whose density varies linearly with temperature. The fluid occupies a cylindrical 
container of uniform circular cross-section, with its axis parallel to the direction of 
gravity. We employ a dimensionless cylindrical polar coordinate system r = ( r ,  4, z), 
with its origin a t  the centre of the lower boundary; we take the upper boundary to 
be at z = 1, and the lateral boundary at r = a, so that the aspect ratio is a. 

For heating from below there is a (motionless) conduction solution to the governing 
equations (Navier-Stokes, continuity and energy, with the Boussinesq approxima- 
tion) in which both temperature and density are linear functions of the vertical co- 
ordinate z, and independent of r and q5. Under the circumstances described this is the 
same solution as for a horizontally unbounded layer. 

When disturbances are applied to the conduction state, the dimensionless governing 
equations for the disturbance field quantities are easily obtained and well known. 
They are 

V2v - Vp + Rig2 = Pr-l{-- + (v. V) v),  (2.1) 

v . v  = 0, (2.2) 

(2.3) 

where v, p, 8 are dimensionless disturbance velocity, pressure and temperature re- 
spectively, w is the z-component of velocity, v = (u, v, w) in cylindrical polars, 2 is 
the unit vector in the z-direction, R is the Rayleigh number and Pr is the Prandtl 
number. 

aV 

at 

ae 
V28+ R ~ w  = + ( v . V )  8, 
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We assume that the upper and lower horizontal boundaries are isothermal, and 

Thermal convection in a vertical circular cylinder 

that they are non-deformable free surfaces. This leads to the boundary conditions 

(2.4) a u a v  
ax a2 

8 = - = - = w = O  on z=O,l, O < r < a .  

The lateral boundary is assumed to be perfectly insulating, and to be a nondeformable 
surface on which the tangential vorticity is zero. As a result we find 

88 a aw 
s = u = - ( r w ) = - = O  ar on r = a ,  O < z < l .  a?. 

As mentioned in 5 1, these artificial boundary conditions allow considerable simplifi- 
cation of the mathematical analysis, but seem unlikely to yield qualitatively mis- 
leading information regarding realistic physical behaviour. 

3. Linearstability 
The value of the Rayleigh number at which the conduction solution loses stability 

is determined from linearization of the system (2.1)-(2.3), together with the boundary 
conditions (2.4)-(2.6). It is easy to show that this linear problem is self-adjoint, which 
implies that the principle of exchange of stabilities holds. Hence we need only consider 
(2.1)-(2.3) with the right-hand sides set equal to zero, subject to (2.4)-(2.6). 

The boundary-value problem is solved by standard methods. A solution can be 
obtained in which the variables are separated, and then some elementary calculations 
lead to the result that the eigenvalues of the problem are given by 

Here n = 1,2,3, . . . is associated with the number of zeros of the corresponding eigen- 
solution in the z-direction, and is called the vertical wavenumber; A is a real positive 
number determined by the condition 

J;(ha) = 0, (3.2) 
where m = 0, 1 ,2, . , . is the azimuthal wavenumber, and Jm is the usual Bessel function 
of order m. 

The critical Rayleigh number for the onset of convection is determined in the 
following way. Let sm, (j = 1,2, ...) denote thejth positive root of the equation 

and write 

(We shall call j = 1,2, ... the radial wawenumber.) Then for each value of m, j and n 
the boundary-value problem admits an eigensolution, with the eigenvalue 

= 0 (m = 0,1,2, ...), (3.3) 

Am, = 8rnj/a* (3.4) 

for m = 0, 1,2, ... and j , n  = 1,2,3, ... . The critical Rayleigh number a t  a fixed 
aspect ratio a is then defined to be 

B, = &(a) = min Rm,n(a). 
mJ,n 
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FIQTJRE 1. Rayleigh number for neutral stability a.a a function of aspect ratio for 
different disturbance modes. 

The solid curve in figure 1 depicts the critical Rayleigh number aa a function of 
aspect ratio in the range 0.5 Q a 6 2.0. The dotted curves show the eigenvalues (3.5) 
for various indicated values of m,j ,  n. We see that for small aspect ratios, for a < 1.1 
approximately, the critical Rayleigh number corresponds to a mode with azimuthal 
wavenumber m = 1. Next, in the range 1.1 < u < 1.65, the critical mode has azimu- 
thal wavenumber m = 2; with further increase of aspect ratio (1.56 < a < 1.8) the 
critical mode is axisyrnmetric, with m = 0. In  the case of rigid sidewalls, Charlson & 
Sani (1971) showed that the ordering of the modes was principally determined by the 
ordering of the zeros of a Bessel function. In  the case of insulating boundaries, their 
characteristic equation was identical with (3 .3 ) .  This fact lends some justification to 
our use of artificial boundary conditions to exhibit qualitative behavioural features. 
Figure 1 is also very similar to the linear stability diagram computed by Rosenblat 
et ul. (1982) for the analogous Marangoni problem. 

For future reference we write down the eigenfunction corresponding to the eigen- 
value (3.5;) for each m,j ,n.  A single calculation gives the following expressions: 

urn,, = Crnjn(nn/Arnj) cos mg5 JL(Arnjr) cos ram, (3 .7a )  

Vrnjn = - Crnjn(mnlr/ALjr) sinmqi Jrn(Arnjr) cos nm, (3 .7b)  

( 3 . 7 4  

(3.7 a) 
w,,, = Cmjn cos mqi Jrn(Arn3r) sin nnz, 

ern,, = COB mg5 Jrn(Amjr) sin nm, 
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with Om,, given by 

As noted earlier, the linear stability problem is self-adjoint, so that (3.7) also gives 
the eigensolutions of the adjoint problem. 

4. Nonlinear convection 
We turn our attention now to the convective motions that arise in association with 

the loss of stability of the conduction solution. We investigate these motions a t  
various values of the aspect ratio in the range 0.5 < a < 2.0, and for slightly super- 
critical Rayleigh numbers. The nonlinear problem will be tackled with what is essen- 
tially a type of Galerkin approximation in which the eigenvalues of the linear stability 
problem are used as the basis for an expansion procedure. This method resembles an 
approach suggested some time ago by Eckhaus (1965); aa we shall eee below, it gives 
results consistent with those obtained by standard bifurcation methods, but has 
greater scope. 

In  the governing equations (2.1)-(2.3), it is convenient to set 

p = Rh, (4.1) 

and to use p as the substantive parameter rather than R. Let (vm5,, em,,) denote an 
eigensolution of the form (3.7) of the linear stability problem, with pmjn the corres- 
ponding eigenvalue. Let (v, 8) be a vector that satisfies (2.2) and the boundary con- 
ditions (2.4)-(2.5). For any number p consider the expression 

Q E (v,,~. ( V ~ V  - vp +pet )  + e,,,(vre +pw)),  (4.2) 

where ( ) denotes integration over the volume occupied by the fluid. From an inte- 
gration by parts and the fact that (v,,,, solves the linear stability problem it is 
easy to show that 

hence Q = 0 when p = p,,,. 
Now let (v, 0) denote a solution of the system (2.1)-(2.3) with boundary conditions 

(2.4)-(2.5) for some given value of p. Take the scalar product of (2.1) with v,,, and of 
(2.3) with ern,,, add, and integrate over the fluid volume. Using (4.3) we find that the 
outcome of these operations is the equation 

Q = (P -Pmjn) (Wrnjn + emjnw)  ; (4.3) 

Next we choose a finite set S of eigensolutions (vmjn, em,,) of the linear stability 
problem. For convenience we write 

S = {mjn}, (4.5) 

which signifies that an element of the set has azimuthal, radial and vertical wave- 
numbers m, j and n respectively; we can thus refer to mjn = p ,  say, as the vector waue- 
number of an element of S. Also, let N 2 1 be the number of elements in the set S. 
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These elements have important orthogonality properties : let (v,, e,), (vq, 0,) denote 
two elements with vector wavenumbers p, q respectively. Then it is easily shown from 
(3.7) that 

{e, e,) = (vP. v,) = (e, wq> = o when p + 4. (4.6) 

Our fundamental assumption is that the solution vector (v, 0)  can be represented, 
to a good approximation, by a linear combination of elements of the finite set S, with 
time-dependent coefficients. We postpone for the present the question of the validity 
of this assumption, and set 

where p denotes the vector wavenumber, as before. 

system of equations of the form 
We substitute (4.7) into (4.4); using the orthogonality relations (4.6), we obtain a 

(4.8) 

where N is the number of elements in S. In (4.8) it is easy to show that the coefficients 
up are given by 

(4.9) 

and that the 2, are homogeneous quadratic functions of the A,, defined by 

2(epw,)z, = ~ e , ( ~ ~ A , ~ q . v ) ~ ~ A , e , + ~ r - ~ ~ , . ( ~ ~ A , ~ , . v ) ~ ~ A , ~ , ) .  (4.10) 

v -= dAp ( p - p p ) A p - Z p  (p = 1, ..., N ) ,  dt 

2(e, w,) V, = {e; + Pr-1 v,. v,), 

8 8 8 8 

We note from (3.7) that 
a, = 2(e,w,> = 2c,(e;), (4.11) 

while from (3.8) we see that C, > 0 for every eigensolution. Hence we deduce the 
inequalities 

for every element of S; these will be useful later. 
We consider now the question of how to decide on a suitable set 8. To study the 

onset of convection as p increases through the critical value pc (for a fixed aspect 
ratio), we take S to comprise the critical mode and the minimum number of other 
modes required to generate nonlinear evolution into convection of the critical mode. 
We shall call this S the minimal set for the onset of convection, noting, however, that, 
as the critical mode changes with aspect ratio, so will the corresponding minimal set. 
For values of p not much greater than pc it is permissible to neglect modes of wave- 
numbersp when p, % p. This is justified by the fact that, because of the form of (4.8), 
modes having p, p are strongly damped except when generated by the quadratic 
self-interaction of the critical mode. A general discussion of the issues involved in the 
choice of S can be found in Rosenblat (1979). 

It is worth recalling that the minimal set cannot comprise the critical mode alone. 
From (3.7) it is easily shown that 

<e,v,. ve,) = (v, , V, . VV,> = 0, (4.13) 

for any p .  Hence, if S were to consist of just one mode, (4.10) would give 2, = 0, and 
then (4.8) would not reveal any nonlinear evolution of the mode. 

a, > 0, v, > 0, (4.12) 
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We use these ideas to investigate the behaviour of the system at various values of 
the aspect ratio. 

5. Bifurcation at simple points 
In this section we study weakly nonlinear evolution into convection a t  three specific 

values of the aspect ratio, namely a = 0.8, 1.4 and 1.7. As can be seen from figure 1, 
the loss of stability of the conduction state a t  each of these values is eimple, that is, 
only one mode loses stability as the Rayleigh number increases through its critical 
value. In each case we reduce the nonlinear problem to a Landau evolution equation, 
and show that a t  each point there is supercritical bifurcation into stable convection. 
This is in accordance with well-known results for the horizontally unbounded layer 
(see e.g. Palm 1976). 

5.1. Bifurcation when a = 0.8 

Figure 1 shows that the critical mode at  this value is 111, that is, azimuthal, radial 
and vertical wavenumbers are all equal to one. From (3.6) we find that 

Re= Rlll = 659. (6.1) 

To determine the minimal set S we observe that the quadratic self-interaction of the 
mode 111 generates the modes Oj2, 2j2, with j = 1,2,3, ... . One can easily show, 
however, that 

(5.2) 

For this reason we neglect all but the leading modes (in the sense of the ordering (6.2)) 
and take the minimal set to be 

s = (111,012,212). (6.3) 

It can in fact be shown that the modes Oj2,2j2 for j 2 2 have no qualitative effect on 
the behaviour of the system. 

We need to consider (4.8) with the quadratic nonlinearities given by (4.10). For the 
mode 11 1, the first term on the right-hand side of (4.10) is 

Rm12 < Rm2, < Rms2 < . .. (m = 0,2). 

~ o l ~ l ~ A l l l v l l l  + A012v012+A212v212) ' V(Alllelll+ A012eO12+ A812e212))* (6*4) 

which contains altogether nine integrals over the fluid volume. On substituting from 
(3.7), however, we show easily that, because of the periodicity of the eigenvectors in 
the #- and z-directions, seven of these nine integrals are identically zero. In  a similar 
fashion, the second term on the right of (4.10) has nine integrals of products of eigen- 
vectors, but again only two of these do not vanish identically. Eventually, then, we 
can show that the quadratic nonlinearity associated with the mode 11 1 is given by 

dlllZll1 = Alll(~OA0,2 + %A212)r 

where dll, is the inner product defined by (4.11), and where 

where the am are given by (6.6). 
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Equations (4.8) for the set (5.3) now take the following forms: 

"111411 = (P-PAA111- ( ~ o A o 1 2 + ~ 2 A 2 1 2 )  4 1 1 / 4 1 1 ,  

" 0 1 2 4 1 2  = (P -Po121 Ao12+ ~ o 4 1 J ~ o 1 2 ,  

(5.8) 

(5.9) 

" 2 1 2 4 1 2  = (P -P212) A212+ azAau1ld212, (5.10) 

where the prime denotes differentiation with respect to t ,  and where we have put 
plll = p,, the critical value. The system (5.8)-(5.10) constitutes the evolution equa- 
tions for the mode l l l a t  aspect ratio a = 0.8. The null solution A,,, = A,,, = A,,, = 0 
corresponds to the conduction state, and is stable for p < p, and unstable for p > p,. 

The system (5.8)-(5.10) can be simplified for weakly nonlinear evolution in the 
following way. We fkd  from (3.5) that 

~ 1 1 1  z 25.7, pol2 x 103.0, ~ 2 1 2  x 104.1, (5.11) 

when a = 0.8. Consequently, in the neighbourhood of p = plll = p, any initial dis- 
turbances corresponding to the modes 012 and 212 are strongly damped, and their 
presence is due to the quadratic self-interaction of the critical mode 11 1.  Hence we 
can neglect the time-derivative terms in (5.9) and (5.10), and also replace p by p, to 
a good approximation, to obtain 

(5.12) 

Substituting these into (5 .8 ) ,  we obtain 

where 
"lI1A;ll = (P-P,)  ~111-%1&11~ (5.13) 

W l l l  = d d ( a: a f (5.14) 

Equation (5.13) is the Landau equation for the evolution of the critical mode 111 
(the fact that the linear growth rate appears as p-p,  instead of the usual R-R, 
is a technicality). Because of the inequalities (4.12) we see that 

"111 ' 0, (5.15) 

without needing to compute any coefficients. The form of (5.13) is thus standard: a 
solution bifurcates from the critical value p, having the representation 

111 012 Po12 - P c )  + 411d212(P212 - P J  * 

(5.16) 

for its amplitude, and having the form of a non-axisymmetric mode with azimuthal 
wavenumber 1. This solution exists only for p > p, (supercritically) and is known from 
elementary bifurcation theory to  be stable. 

5.2. Bifurcation when a = 1.4 

The critical mode at this aspect ratio is 21 1 : the azimuthal wavenumber is 2, and the 
radial and vertical wavenumbers are both 1. The critical Rayleigh number is 

R, = Rzll = 658. (5.17) 

The quadratic self-interaction of the mode 211 generates the modes Oj2, 4j2 with 
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j = I, 2,3, ... . By the same reasoning as before we neglect the modes with j 2 2, 
and take the minimal set to be 

S = (211,012,412). (5.18) 

After performing the standard calculations, we find for the nonlinearity associated 

d 2 1 1 ~ 2 1 1  = A 2 1 1 ~ ~ 0 A 0 1 2  +p4A412)2 (5.19) 

r6, = ( ~ 2 1 1 ~ 2 l l . V 8 m 1 2 + P r - ~ ~ 2 l 1 .  ( ~ 2 1 1 . V ) v m d  (m = 0,412 (5.20) 

while the nonlinearities associated with the modes 012 and 412 are found to be given by 

drn12zm12 = -BrnA811 (m = '$4). (6.21) 

The three evolution equations (4.8) for the set (5.17) can now be written down. As 
before, however, we reduce them to a single equation by setting Ai12 = AiI2 = 0, and 
solving for AOl2, A412 in terms of A211. We obtain in this way the Landau equation 

Val1 4 1 1  = (P -PA A211 - "21144f11, (6.22) 
where 

If: + 84 (6.23) 

with the critical mode 2 11 

where 

d811d012@012-~c) d211d41a@412-Pc) ' "211 = 

for p sufficiently close to pSll. As before we see that will > 0, and so the expression 

A211 = k [(P -Pc)I"2111* (5.24) 

represents the amplitude of a stable, supercritical convection solution having azimu- 
thal wavenumber 2 and bifurcating from the critical point p = pc. 

5.3. Bifurcation when a = 1.7 

At this value of the aspect ratio the critical mode is the axisymmetric mode 011, 
whose quadratic self-interaction generates the modes Oj2, with j = 1,2,3, . . . . We 
truncate as before, and take the minimal set to  be 

s = (011,012). (5.25) 

We evaluate the nonlinear quantities (4.10) to obtain 

~ 0 1 1 ~ 0 1 1  = YOOAOllA012, ~ 0 1 2 ~ 0 1 2  = - 3/00 4 1 1 ,  (6.26) 
where 

3/00 = < ~ 0 1 1 ~ 0 1 1 - ~ ~ 0 1 2  + Pr-l VOll. (VOll. V) Vo12). (5.27) 

Writing down the evolution equations and solving for AO12, we arrive finally at the 
Landau equation 

yo11 A ;11 = (P - Pc) A 011 - "011 A :119 (5.28) 
where 

> 0. Y& 
011 018 Po12 - P A  "011 = d (j ( (5.29) 

From (5.28)-(6.29) we infer that there is supercritical bifurcation into stable axisym- 
metric convection at the aspect ratio a = 1-7. 
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6. Bifurcation near double points 
It is evident from figure 1 that there are certain values of the aspect ratio at which 

two modes lose stability simultaneously. At these values the Rayleigh number is a 
double eigenvalue of the linear stability problem. In this section we shall investigate 
the onset of convection in the neighbourhood of such double points. 

6.1. Bifurcation near point A 
At the point marked A on figure 1 the curves of R as a function of aspect ratio for the 
modes 11 1 and 21 1 intersect. We denote by a, the value of the aspect ratio at which 
this occurs; in fact a, x 1.08. The common value of Rlll, R,,, at this point will be de- 
noted R,, and pa will be the corresponding value of p. 

We are interested in studying the onset of convection at values of a close to 
a,. As noted in 5 5, the self-interaction of the mode 11 1 generates modes Oj2, 2j2 
(j = 1,2, ...), while the self-interaction of the mode 211 generates modes Oj2,4j2. In 
addition, the mutual interaction of the modes 11 1, 211 generates lj2,3j2. To 
investigate the behaviour of the system in a neighbourhood of a = a, we neglect 
the modes with j 2 2 and take as the minimal set 

AS' = (111,211,012,112,212,312,412). (6.1) 

This includes the two critical modes and their dominant interactions. 

grouped in the following way: 
The system (4.8) now comprises seven evolution equations, which are conveniently 

~ m 1 1 A L  = ( P - P m d  Amll-'mll (m = 1,2), (6.2) 

(6.3) 

where the derivatives in the second group of equations have been set equal to zero, 
in accordance with the discussion in 5 5. 

The quadratic nonlinearities appearing in (6.2) are calculated from (4.10). We find 
that 

0 = @A -pm12) A m l a  - zm12 (m = 0, * * * 3 4 ) ~  

'111 '111 = + + A211(a21 + (6.4) 

a, = < ~ l l l ( V 2 1 1 .  v 4 n 1 2  + Vml2. V0211) + I%+-' V l l l .  (Val1 vvm12 + v,fI12 VV211)) (6.5) 

'211'211 = A 2 1 1 ( ~ 0 A 0 1 2 + ~ 4 A 4 1 2 )  + A l l l ( ~ 2 1 A l 1 2 + ~ 2 3 A 3 1 2 ) ~  (6.6) 

(6.7) 

for m = 1,3. The quadratic nonlinearities in (6.3) are also determined from (4.10), 
and are as follows: 

dOl,Z012 = - aoA?11 - P 0 4 1 1 ,  ( 6 . 8 ~ )  

'212'212 = -u2A?11, '412'418 = -p4'&l, (6.8b) 

d112'112 = - d l A l l l A 2 1 1 ~  d312'312 = -d3A111A211~ ( 6 . 8 ~ )  

where ao, u2 are defined by (5.6), and where 

form = 1,3; and 

where F o , p 4  are defined by (5.20) and where 

P2m = < ~ , , , ( V l l l *  v 4 n 1 2  + Vml2 - V 4 1 J  + Pr-' V211. ( V l l l *  vvm12 + "m1n - VV111)) 
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QPll x 102 0111 x 10s Pr V l l l  oll1 x 103 dill x 10, Val1  

1.0 2.09 0.78 0.64 1.49 0.82 1-45 
10 1.15 0.26 0.62 0.82 0.30 0.63 

00 1.06 0.23 0.61 0.76 0.26 0.47 

TABLE 1 

where 
am = ((0211~111.V + ~ , , , ~ 2 1 1 - V )  0m,,+pr-'[v211* (v,u*V) +vllr. ( ~ 2 1 1 * V ) I ~ m 1 2 )  

(6.9) 
form = 1,3. 

coupled evolution equations for the modes All, and A,,, : 
Substituting (6.3) and (6.8) into (6.4) and (6.6), we can rewrite (6.2) as a pair of 

~ 1 1 1 ~ ~ 1 1  = @-Pll1)All1-~l l lA:l l -~l l lAll lAg, , l~  (6.10a) 

~e i iA; i i=  (P-Paii) 44211 - ~2iiAfiiAaii-  wziiA%ii* (6.10 b) 

In these equations o,,,, wall are as defined by (5.14) and (6.23) respectively, with pc 
replaced by p,, and the coefficients CT,,,, rZll are given by 

aoso + a 2 1 4  + a2883 (6.11a) 

s28 83 (6.11 b) 

Computed values of the coefficients in (6.10a, b) for various values of the Prandtl 
number are shown in table 1. 

We consider first the nature and stability of solutions at aspect ratios slightly less 
than a,. Then we introduce the notation 

7 = P-Plll, E = P2ll-Plll ' 0, (6.12) 

o i a ( ~ o 1 2 - ~ ~ )  4 1 2 @ 1 1 2 - ~ ~ )  dsra@sie-~~)'  

d o n ( ~ o 1 2 - ~ d  4 1 a ( ~ 1 1 2 - ~ ~ )  d a n @ s i z - ~ ~ ) '  

~ 1 1 1 ~ 1 1 ,  = d 

aoso + s 2 1 4  + 
d21lagll = 

and it is convenient to write (6.10u, b) in the form 

VIA; = gA,-w1A:-u1A,A& (6.13a) 

v ~ A ;  = (g-e) A,-a,AfA,-w,A& (6.13b) 

where for the sake of brevity we have replaced the subscripts 1 1  1,211 by 1 , 2  respec- 
tively. 

We note that, if (A,, 2,) denotes a solution of (6.13), the stability of this solution 
to a disturbance (a,, a,) is determined from the exponents of the linear system 

( 6 . 1 4 ~ )  

(6.14b) 

- -  
vlai = (g - 30,Bf - a,Bt) a, - 2r1,A,A,a2, 

v,a; = - 2 ~ ,  A,  Aaa, + (g - E: - a,af - 3w,23 a,. 
- -  

The system (6.13) has effectively four solutions. 
I. The trivial solution (the conduction state) A, = A, = 0 exists for a11 g, and is 

stable for g < 0 and unstable for g > 0; in other words, this solution exists for all p, 
and is stable foy p < p,,, and unstable for p > p,,,. 
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FIQURE 2. Bifurcation diagrams for solutions: (a) just to the left of point A in figure 1; and 
(b) just to the right of point A. -, stable solutions; - - - , unstable solutions. 

11. There is a solution (actually a pair of solutions) 

A 2 - 2 2 -  1 -  1 - 7 / g ,  A % = O  (6.15) 

for 11 > 0 (p > pIl1); this is the standard supercritical bifurcating solution. For this 
solution the stability equations reduce to 

via; = -2qa1, vaad = (7-c-u27/u1)a2.  (6.16) 

Since u2/ol > 1 (table l) ,  it follows that this solution is always stable. 
111. The solution 

A! = 0, A: = At = ( ~ - E ) / w ~  (6.17) 

bifurcates to the right from the second critical point pall. For its stability we have 

J& = [7 - Ul(7 - 4 / (321  a,, ha;, = - 2(7- 4 a2, (6.18) 

from which we infer that this solution is unstable initially, when r) is slightly greater 
than E ,  but regains stability at  the point 

(6.19) 
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IV. There is a mixed solution 

(6.20) 

which is easily seen to exist only for 7 > qT. In fact, this solution bifurcates from the 
solution I11 at the point where the latter changes from unstable to stable. A simple 
calculation involving (6.14a, b) shows that the solution (6.20) is unstable. 

A schematic representation of all these solutions is shown in figure 2(a);  btable 
solutions are indicated by solid lines and unstable solutions by dotted lines. The 
conduction solution I is stable for p < plll, and the pure-mode (with azimuthal wave- 
number m = 1) convection solution I1 is stable for p > plll. In addition, there is 
another stable pure mode (with m = 2) for p > pT. Numerical calculations show that 
pT increases with decreasing Prandtl number. The secondary bifurcation into a 
mixed mode is always unstable. 

For aspect ratios slightly greater than aA, we have that pall < plll and the foregoing 
analysis can be repeated if instead of (6.12) we use the definitions 

7 = P-P211, 6 = P111-P211. (6.21) 

It is then easy to show that the pure-mode (m = 2) convection solution, which bifur- 
cates from the conduction solution at p = pall, exists and is stable for p > pall. The 
convection solution with m = 1 originates at  p = plll, is initially unstable and regains 
stability at ps given by 

u 2 e  
Ps = P111+-. 

u 2  - "1 
(6.22) 

There is also secondary bifurcation h t o  an unstable mixed mode. The pattern of 
solutions is illustrated in figure 2 (b). 

6.2. Bifurcation near point B 
The point B in figure 1 is the intersection of the curves R = R(a) for the modes 211 
and 01 1. At this point we write a = aB (x  1.54) and R,,, = Roll = R,. For convection 
in a neighbourhood of a, we take 

8 = (211,011,012,212,412); (6.23) 

this is the minimal set describing the self-interactions and mutual interaction of the 
modes 211,011. 

The system (4.8) is now composed of five equations: 

vrn l lAk= @ - ~ m l l ) A m l l - Z m l l  (m = 0,2), (6.24) 

Am12 = (m = 0,2,4). 
PB - Pm12 

(6.25) 

The quadratic nonlinearities are calculated from (4.10) in the usual way. We obtain 

d211 '211 = A211(p0 + p4A41 2) + 702A011 A%12, (6.26) 

where Po, p4 are as previously defmed and where 

702 = (021l(VOll* v 4 1 2  + v212 - V0011) + Pr-' V2l l .  (VOll. v v 2 1 2  + v212 * Vv011)); (6.27) 



Pr V a n  W a l l  x lo8 7811 x 102 "011 7011 x 101 wo11 x 102 

1.0 1.86 1-23 0.29 1.61 1-06 0.75 
10 1.03 0.47 0.23 0.89 0.43 0.33 
al 0.95 0.41 0.22 0.81 0.39 0.30 

TABLE 2 

and 

where 
~ 0 1 1 ~ 0 1 1  = Y o o A O l l ~ O l 2  +Y22A2llA2129 (6.28) 

Y22 = < ~ O l l ( V % l l ~  V0212 + V212 * vo211) + Pr-' VOll. (Val1 * v v 2 1 2  + v212 * VV211)). (6.29) 

We also find that 

~ 0 1 2 ~ 0 1 2  = - Y , ~ : l l - ~ o ~ f l l Y  (6.30a) 

d2122212 = -72A211A011, d412z412 = -r6,Af11, (6.30b, c) 
where 

Y2 = ~ ~ ~ 0 1 1 ~ 2 1 1 . ~ + ~ 2 1 1 ~ 0 1 1 . ~ ~  ~ 2 1 2 + ~ ~ - " ~ 0 1 1 . ~ ~ , 1 1 . ~ ~ + ~ 2 1 1 . ~ ~ 0 1 1 . ~ ~ 1 ~ , 1 2 ~ .  (6.31) 

Some simple algebra enables us to reduce (6.24) to a pair of coupled evolution equa- 

v21144.&1= @ - ~ a 1 1 ~ ~ 2 1 1 - ~ 2 1 1 ~ ~ 1 1 - ~ 2 1 1  A211A9119 (6.32a) 

voiiA;ii = @ -poll) A011 - 7 0 1 1 A f i i A o i i  - @oil 4 1 1 ,  (6.32 b)  

where wZl1, woll are defined by (5.23), (5.29) respectively, and where 

tions for the modes and Aoll: 

7211 = d d AYoo ( + Y2Yo2 (6.33a) 

(6.33 b)  

211 012 Po12 - PB) d211d212@212 - P d  ' 

AYoo Y2Y22 
7oii = d d 

011 012@012 -Pa) + dOlld212(P212 - P a )  * 

Computed values of the respective coefficients are shown in table 2. 

less than aB, we write 
We proceed to analyse the system (6.32) as in the previous case. When a is slightly 

7 = P-P2119 E = Po11-P211 ' 0, (6.34) 

whereupon (6.32 a, b) become, in abbreviated notation, 

v ~ A ;  = ~ A ~ - u ~ A X - T ~ A ~ A ~ ,  (6.36 a )  

voA; = ( q - " ) A o - 7 0 A ~ A o - w o A ~ .  (6.36 b)  

These equations are identical in structure with (6.13), and the analysis is performed 
in the same way. There are, however, important differences in behaviour due to 
differences in the numerical values of the coefficients. We omit the computational 
details and merely report the results, as follows. 

The conduction solution loses stability at q = 0 (p = pZl,), and is replaced by a 
supercritically bifurcating solution that has azimuthal wavenumber 2. This solution 
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(a 1 ( b )  

FIQ- 3. Bifurcation diagrams for solutions: (a) just to the left of point B in figure 1; and 
(a) just to the right of point B. -, stable solutions; - - -, unstable solutions. 

is stable when it leaves the bifurcation point but, since 70 /Wa < 1, it becomes unatable 
a t  the point 

(6.36) 

The axisymmetric convective solution emerging supercritically from 7 = I Z  is always 
unstable. The mixed solution 

(6.37) 

exists only for 7 > 7;; this solution appears aa a secondary bifurcation from the 
m = 2 solution at the point where the latter changes from stable to unstable. The 
solution (6.37) can be shown to be stable. All these solutions axe illustrated in figure 3 (a) .  

7 = P-Po11, 8 = P211-Po11 ' 0, (6.38) 

and we find the same pattern of behaviour, with the roles of the modes reversed. As 

When a is slightly greater than a,, we repeat the analysis with 
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shown in figure 3(b), the stable solutions are the conduotiofi solution for 7 < 0, an 
axisymmetric convection solution for 0 < 7 < tQ, where 

(6.39) 

and a mixed-rnode solution for 7 > vQ. 

7, Discussion 
When the critical Rayleigh number is a simple eigenvalue Df the linear stability 

problem, the cohvective motion has the geometry of the critical mode. (This, of course, 
is a classical result of bifurcation theory.) In  particular, when a < 1-0 approximately 
the incipieht convection is a mode of azimuthal wavenumber 1 and, since the two lowest 
Rayleigh number curves are well separated in this regime, one would expect this pure 
mode to persist over quite a range of supercritical Rayleigh numbers. 

When a > 1.0, oh the other band, the neutral &ability curves begin to bunch to- 
gether, and the typical behavidur is likely to be that encountered in the neighbour- 
hoods of double points of criticality, as discussed in $6. One may infer from that 
discussion that either one of two pure modes can exist when a is slightly greater than 
one, but that with further increase in aspect ratio a mixed mode is the predominant 
form of the convection. 

The latter conclusion is broadly consistent with that of Charlson & Sani (1975), 
who studied the stability of axisymmetric convection to non-axisymmetric distur- 
bances under a variety of boundary conditions. They found in many cases that axisym- 
metric convection became unstable at some supercritical Rayleigh number; presum- 
ably, according to our calculations, it would be replaced by mixed-mode convection. 
The results of Rosenblat et al. (1982) on Marangoni convection bear some resemblance 
to those obtained above in that pure modes are generally replaced by mixed modes 
near double points, but there are also significant differences due to the presence of 
quadratic nonlinearities in the evolution equations of the Marangoni problem. 
As the aspect ratio increases the neutral stability curves become very close, and a 

separate analysis is required. This will be presented in a later paper. 

This work was supported by a grant from the National Science Foundation, Fluid 
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